This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296484 #4 Apr 24 2018 12:10:46 %S A296484 1,3,6,7,8,9,10,12,13,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31, %T A296484 33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,54,55,56,57, %U A296484 58,59,60,61,62,63,64,65,66,67,68,70,71,72,73,74,75,76 %N A296484 Solution (a(n)) of the system of 3 complementary equations in Comments. %C A296484 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 4: %C A296484 a(n) = least new; %C A296484 b(n) = a(n-1)+c(n-1); %C A296484 c(n) = 2 a(n) + b(n); %C A296484 where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers. %H A296484 Clark Kimberling, <a href="/A296484/b296484.txt">Table of n, a(n) for n = 0..1000</a> %e A296484 n: 0 1 2 3 4 5 6 7 8 9 %e A296484 a: 1 3 6 7 8 9 10 12 13 15 %e A296484 b: 2 5 14 32 53 77 104 134 170 209 %e A296484 c: 4 11 26 46 69 95 124 158 196 239 %t A296484 z = 300; %t A296484 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A296484 a = {1}; b = {2}; c = {4}; n = 1; %t A296484 Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A296484 AppendTo[b, a[[n - 1]] + c[[n - 1]]], %t A296484 AppendTo[c, 2 Last[a] + Last[b]]}, {z}]; %t A296484 Take[a, 100] (* A296484 *) %t A296484 Take[b, 100] (* A296502 *) %t A296484 Take[c, 100] (* A297149 *) %Y A296484 Cf. A299634, A296502, A297149. %K A296484 nonn,easy %O A296484 0,2 %A A296484 _Clark Kimberling_, Apr 24 2018