This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296486 #4 Apr 13 2018 21:52:18 %S A296486 5,8,5,9,9,9,6,6,2,9,8,4,4,6,4,4,0,3,1,2,8,6,0,3,5,7,7,5,8,6,0,5,4,2, %T A296486 6,0,8,8,1,6,1,8,8,8,4,6,3,9,7,2,6,3,6,1,0,1,9,6,8,1,0,0,1,8,7,9,9,3, %U A296486 6,3,9,4,8,0,6,9,6,5,7,1,0,4,5,7,9,5 %N A296486 Decimal expansion of limiting power-ratio for A295960; see Comments. %C A296486 Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A295960, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences. %e A296486 limiting power-ratio = 5.859996629844644031286035775860542608816... %t A296486 a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5; %t A296486 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1; %t A296486 j = 1; While[j < 13, k = a[j] - j - 1; %t A296486 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296486 Table[a[n], {n, 0, k}]; (* A295960 *) %t A296486 z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}]; %t A296486 StringJoin[StringTake[ToString[h[[z]]], 41], "..."] %t A296486 Take[RealDigits[Last[h], 10][[1]], 120] (* A296486 *) %Y A296486 Cf. A001622, A295960, A296284, A296485. %K A296486 nonn,easy,cons %O A296486 1,1 %A A296486 _Clark Kimberling_, Apr 13 2018