This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296488 #7 Jan 01 2018 21:57:28 %S A296488 4,8,6,3,6,9,8,8,6,8,1,5,6,0,7,9,1,9,5,8,5,9,8,8,8,7,5,2,1,4,9,6,5,7, %T A296488 1,9,8,7,1,7,4,9,0,9,2,2,2,5,6,9,4,8,8,2,3,8,9,7,6,2,2,3,2,9,1,6,7,9, %U A296488 6,4,4,5,0,1,6,1,7,1,3,3,9,0,8,6,3,9 %N A296488 Decimal expansion of limiting power-ratio for A293076; see Comments. %C A296488 Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A293076, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences. %e A296488 limiting power-ratio = 4.863698868156079195859888752149657198717... %t A296488 a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5; %t A296488 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2]; %t A296488 j = 1; While[j < 13, k = a[j] - j - 1; %t A296488 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296488 Table[a[n], {n, 0, k}]; (* A293076 *) %t A296488 z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}]; %t A296488 StringJoin[StringTake[ToString[h[[z]]], 41], "..."] %t A296488 Take[RealDigits[Last[h], 10][[1]], 120] (* A296488 *) %Y A296488 Cf. A001622, A293076, A296284, A296487. %K A296488 nonn,easy,cons %O A296488 1,1 %A A296488 _Clark Kimberling_, Dec 19 2017