This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296502 #4 Apr 24 2018 12:10:52 %S A296502 2,5,14,32,53,77,104,134,170,209,254,302,353,407,464,524,587,653,722, %T A296502 794,869,950,1034,1121,1211,1304,1403,1505,1610,1718,1829,1943,2060, %U A296502 2180,2303,2429,2558,2690,2825,2966,3110,3257,3407,3560,3716,3878,4043,4211 %N A296502 Solution (b(n)) of the system of 3 complementary equations in Comments. %C A296502 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 4: %C A296502 a(n) = least new; %C A296502 b(n) = a(n-1)+c(n-1); %C A296502 c(n) = 2 a(n) + b(n); %C A296502 where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers. %H A296502 Clark Kimberling, <a href="/A296502/b296502.txt">Table of n, a(n) for n = 0..1000</a> %e A296502 n: 0 1 2 3 4 5 6 7 8 9 %e A296502 a: 1 3 6 7 8 9 10 12 13 15 %e A296502 b: 2 5 14 32 53 77 104 134 170 209 %e A296502 c: 4 11 26 46 69 95 124 158 196 239 %t A296502 z = 300; %t A296502 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A296502 a = {1}; b = {2}; c = {4}; n = 1; %t A296502 Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A296502 AppendTo[b, a[[n - 1]] + c[[n - 1]]], %t A296502 AppendTo[c, 2 Last[a] + Last[b]]}, {z}]; %t A296502 Take[a, 100] (* A296484 *) %t A296502 Take[b, 100] (* A296502 *) %t A296502 Take[c, 100] (* A297149 *) %Y A296502 Cf. A299634, A296484, A297149. %K A296502 nonn,easy %O A296502 0,1 %A A296502 _Clark Kimberling_, Apr 24 2018