cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296512 a(n) is the largest subpart of the symmetric representation of sigma(n).

This page as a plain text file.
%I A296512 #56 Jun 18 2025 06:10:44
%S A296512 1,3,2,7,3,11,4,15,5,9,6,23,7,12,8,31,9,35,10,39,11,18,12,47,13,21,14,
%T A296512 55,15,59,16,63,17,27,18,71,19,30,20,79,21,83,22,42,27,36,24,95,25,39,
%U A296512 26,49,27,107,28,111,29,45,30,119,31,48,32,127,33,131,34,63
%N A296512 a(n) is the largest subpart of the symmetric representation of sigma(n).
%C A296512 If n is an odd prime (A065091) then a(n) = (n + 1)/2.
%C A296512 If n is a power of 2 (A000079) then a(n) = 2*n - 1.
%C A296512 If n is a perfect number (A000396) then a(n) = 2*n - 1, assuming there are no odd perfect numbers.
%C A296512 a(n) is also the largest element in the n-th row of the triangles A279391, A280851 and A296508.
%C A296512 The symmetric representation of sigma(n) has A001227(n) subparts.
%C A296512 For the definition of the "subpart" see A279387.
%C A296512 For a diagram with the subparts for the first 16 positive integers see A296508.
%e A296512 For n = 15 the subparts of the symmetric representation of sigma(15) are [8, 7, 1, 8], the largest subpart is 8, so a(15) = 8.
%t A296512 (* a280851[] and support function are defined in A280851 *)
%t A296512 a296512[n_]:=Max[a280851[n]]
%t A296512 Map[a296512,Range[68]] (* _Hartmut F. W. Hoft_, Sep 05 2021 *)
%Y A296512 Shares infinitely many terms with A241558, A241559, A241838, A296513 (and possibly more).
%Y A296512 Cf. A000079, A000203 (sum of subparts), A000225, A000396, A001227 (number of subparts), A065091, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A245092, A279387, A279391, A280850, A280851, A296508.
%K A296512 nonn
%O A296512 1,2
%A A296512 _Omar E. Pol_, Feb 10 2018
%E A296512 More terms from _Omar E. Pol_, Aug 28 2021