cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296513 a(n) is the smallest subpart of the symmetric representation of sigma(n).

This page as a plain text file.
%I A296513 #56 Jun 18 2025 06:10:48
%S A296513 1,3,2,7,3,1,4,15,3,9,6,5,7,12,1,31,9,2,10,3,5,18,12,13,5,21,6,1,15,3,
%T A296513 16,63,7,27,3,10,19,30,8,11,21,4,22,42,1,36,24,29,7,15,10,49,27,3,8,9,
%U A296513 11,45,30,6,31,48,5,127,9,1,34,63,13,13,36,7,37,57,3
%N A296513 a(n) is the smallest subpart of the symmetric representation of sigma(n).
%C A296513 If n is an odd prime (A065091) then a(n) = (n + 1)/2.
%C A296513 If n is a power of 2 (A000079) then a(n) = 2*n - 1.
%C A296513 If n is a perfect number (A000396) then a(n) = 1 assuming there are no odd perfect numbers.
%C A296513 a(n) is also the smallest number in the n-th row of the triangles A279391 and A280851.
%C A296513 a(n) is also the smallest nonzero term in the n-th row of triangle A296508.
%C A296513 The symmetric representation of sigma(n) has A001227(n) subparts.
%C A296513 For the definition of the "subpart" see A279387.
%C A296513 For a diagram with the subparts for the first 16 positive integers see A296508.
%C A296513 It appears that a(n) = 1 if and only if n is a hexagonal number (A000384). - _Omar E. Pol_, Sep 08 2021
%C A296513 The above conjecture is true. See A280851 for a proof. - _Omar E. Pol_, Mar 10 2022
%e A296513 For n = 15 the subparts of the symmetric representation of sigma(15) are [8, 7, 1, 8], the smallest subpart is 1, so a(15) = 1.
%t A296513 (* a280851[] and support function are defined in A280851 *)
%t A296513 a296513[n_]:=Min[a280851[n]]
%t A296513 Map[a296513,Range[75]] (* _Hartmut F. W. Hoft_, Sep 05 2021 *)
%Y A296513 Shares infinitely many terms with A241558, A241559, A241838, A296512 (and possibly more).
%Y A296513 Cf. A000079, A000203 (sum of subparts), A000225, A000384, A000396, A001227 (number of subparts), A065091, A099378, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A245092, A279387, A279391, A280850, A280851, A296508.
%K A296513 nonn
%O A296513 1,2
%A A296513 _Omar E. Pol_, Feb 10 2018
%E A296513 More terms from _Omar E. Pol_, Aug 28 2021