This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296519 #21 Jul 24 2023 02:38:02 %S A296519 2,6,20,210,504,4620,51480,18018,272272,23279256,21162960,446185740, %T A296519 2059318800,5736673800,22181805360,1289317436550,1213475234400, %U A296519 8022419605200,281206918792800,267146572853160,10431437606647200,428163098127382800,409547311252279200 %N A296519 Denominator of n*Sum_{k=1..n} 1/(n+k). %C A296519 a(n) is divisible by all primes p such that the numerator of Sum_{n < k*p <= n} 1/k is not divisible by p, in particular by all primes from n+1 to 2*n-1. - _Robert Israel_, May 21 2020 %H A296519 Robert Israel, <a href="/A296519/b296519.txt">Table of n, a(n) for n = 1..1155</a> %F A296519 From _G. C. Greubel_, Jul 24 2023: (Start) %F A296519 a(n) = 2*A117664(n). %F A296519 a(n) = 2*A111876(n-1)/n. (End) %e A296519 The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/a(n). %p A296519 N:= 30: # for a(1)..a(N) %p A296519 H:= ListTools:-PartialSums([seq(1/i,i=1..2*N)]): %p A296519 map(n -> denom(n*(H[2*n]-H[n])), [$1..N]); # _Robert Israel_, May 21 2020 %t A296519 Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 30}] // Denominator %o A296519 (PARI) a(n) = denominator(n*sum(k=1, n, 1/(n+k))); \\ _Michel Marcus_, Dec 14 2017 %o A296519 (Magma) [Denominator(n*(HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // _G. C. Greubel_, Jul 24 2023 %o A296519 (SageMath) [denominator(n*(harmonic_number(2*n,1) - harmonic_number(n,1))) for n in range(1,41)] # _G. C. Greubel_, Jul 24 2023 %Y A296519 Cf. A111876, A117731 (numerators), A117664. %K A296519 nonn,frac %O A296519 1,1 %A A296519 _Eric W. Weisstein_, Dec 14 2017