cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296524 Number of connected (2*k)-regular graphs on 2*n+1 nodes with maximal diameter D(n,k) A294733 written as triangular array T(n,k), 1 <= k <= n.

This page as a plain text file.
%I A296524 #26 Nov 23 2019 04:07:00
%S A296524 1,1,1,1,2,1,1,16,4,1,1,1,266,6,1,1,5,367860,10786,10,1,1,19,1
%N A296524 Number of connected (2*k)-regular graphs on 2*n+1 nodes with maximal diameter D(n,k) A294733 written as triangular array T(n,k), 1 <= k <= n.
%C A296524 The next term a(24) corresponding to the 6-regular graphs on 15 nodes is conjectured to be 1. It seems that there exists only one graph with diameter A294733(24)=4. Its adjacency matrix is
%C A296524       1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
%C A296524    1  . 1 1 1 1 1 1 . . . . . . . .
%C A296524    2  1 . 1 1 1 1 1 . . . . . . . .
%C A296524    3  1 1 . 1 1 1 1 . . . . . . . .
%C A296524    4  1 1 1 . 1 1 1 . . . . . . . .
%C A296524    5  1 1 1 1 . 1 1 . . . . . . . .
%C A296524    6  1 1 1 1 1 . . 1 . . . . . . .
%C A296524    7  1 1 1 1 1 . . 1 . . . . . . .
%C A296524    8  . . . . . 1 1 . 1 1 1 1 . . .
%C A296524    9  . . . . . . . 1 . 1 1 . 1 1 1
%C A296524   10  . . . . . . . 1 1 . . 1 1 1 1
%C A296524   11  . . . . . . . 1 1 . . 1 1 1 1
%C A296524   12  . . . . . . . 1 . 1 1 . 1 1 1
%C A296524   13  . . . . . . . . 1 1 1 1 . 1 1
%C A296524   14  . . . . . . . . 1 1 1 1 1 . 1
%C A296524   15  . . . . . . . . 1 1 1 1 1 1 .
%C A296524 The distance of 4 is achieved between nodes 1 and 13. None of the remaining 1470293674 graphs seems to have a diameter > 3.
%C A296524 The conjecture is confirmed using Markus Meringer's GenReg program. Aside from the 1 shown 6-regular graph on 15 nodes with diameter 4 there are 870618932 graphs with diameter 2 and 599674742 graphs with diameter 3. - _Hugo Pfoertner_, Dec 19 2017
%D A296524 For references see A294733.
%H A296524 M. Meringer, <a href="https://sourceforge.net/projects/genreg/">GenReg</a>, Generation of regular graphs.
%e A296524                  Degree r
%e A296524         2   4    6     8    10   12   14  16
%e A296524    n  --------------------------------------
%e A296524    3 |  1  Diameter A294733
%e A296524      |  1  Number of graphs with this diameter (this sequence)
%e A296524      |
%e A296524    5 |  2   1
%e A296524      |  1   1
%e A296524      |
%e A296524    7 |  3   2    1
%e A296524      |  1   2    1
%e A296524      |
%e A296524    9 |  4   2    2     1
%e A296524      |  1  16    4     1
%e A296524      |
%e A296524   11 |  5   4    2     2     1
%e A296524      |  1   1   266    6     1
%e A296524      |
%e A296524   13 |  6   5    2     2     2    1
%e A296524      |  1   5 367860 10786  10    1
%e A296524      |
%e A296524   15 |  7   6    4     2     2    2   1
%e A296524      |  1  19    1     ?     ?   17   1
%e A296524      |
%e A296524   17 |  8   7  >=4     2     2    2   2    1
%e A296524      |  1  33    ?     ?     ?    ?  25    1
%e A296524 .
%e A296524 a(12)=1 corresponds to the only 4-regular graph on 11 nodes with diameter 4.
%e A296524 Its adjacency matrix is
%e A296524 .
%e A296524       1 2 3 4 5 6 7 8 9 0 1
%e A296524    1  . 1 1 1 1 . . . . . .
%e A296524    2  1 . 1 1 1 . . . . . .
%e A296524    3  1 1 . 1 1 . . . . . .
%e A296524    4  1 1 1 . . 1 . . . . .
%e A296524    5  1 1 1 . . 1 . . . . .
%e A296524    6  . . . 1 1 . 1 1 . . .
%e A296524    7  . . . . . 1 . . 1 1 1
%e A296524    8  . . . . . 1 . . 1 1 1
%e A296524    9  . . . . . . 1 1 . 1 1
%e A296524   10  . . . . . . 1 1 1 . 1
%e A296524   11  . . . . . . 1 1 1 1 .
%e A296524 .
%e A296524 A shortest walk along 4 edges is required to reach node 9 from node 1.
%e A296524 All others of the A068934(60)=265 4-regular graphs on 11 nodes have smaller diameters, i.e., 37 with diameter 2 and 227 with diameter 3.
%Y A296524 Cf. A068934, A294733, A296525, A296526, A296620.
%K A296524 nonn,tabl,hard,more
%O A296524 1,5
%A A296524 _Hugo Pfoertner_, Dec 14 2017