cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296525 Maximal diameter of connected k-regular graphs on 2*n nodes written as array T(n,k), 2 <= k < 2*n.

This page as a plain text file.
%I A296525 #23 Dec 20 2017 14:44:43
%S A296525 2,1,3,2,2,1,4,3,2,2,2,5,5,3,2,2,2,2,1,6,6,4,3,2,2,2,2,2,1,7,8,5,5,3,
%T A296525 2,2,2,2,2,2,1,8,9,7,5
%N A296525 Maximal diameter of connected k-regular graphs on 2*n nodes written as array T(n,k), 2 <= k < 2*n.
%C A296525 The results were found by applying the Floyd-Warshall algorithm to the output of Markus Meringer's GenReg program.
%H A296525 L. Caccetta, W. F. Smyth <a href="https://doi.org/10.1016/0012-365X(92)90047-J">Graphs of maximum diameter</a>, Discrete Mathematics, Volume 102, Issue 2, 20 May 1992, Pages 121-141.
%H A296525 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Regular Graphs.</a>
%H A296525 M. Meringer, <a href="https://sourceforge.net/projects/genreg/">GenReg</a>, Generation of regular graphs.
%H A296525 StackOverflow, <a href="https://stackoverflow.com/questions/15646307/algorithm-for-diameter-of-graph">Algorithm for diameter of graph?</a>.
%H A296525 Wikipedia, <a href="https://en.wikipedia.org/wiki/Distance_(graph_theory)">Distance (graph theory).</a>
%H A296525 Wikipedia, <a href="https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm">Floyd-Warshall algorithm.</a>
%e A296525 Table starts:
%e A296525 Degree = 2  3  4  5  6  7  8  9
%e A296525 n= 4 :   2  1
%e A296525 n= 6 :   3  2  2  1
%e A296525 n= 8 :   4  3  2  2  2  1
%e A296525 n=10 :   5  5  3  2  2  2  2  1
%e A296525 ...
%e A296525 See example in A296526 for a complete illustration of the irregular table.
%Y A296525 Cf. A068934, A294732 (2nd column of table), A294733, A296524, A296526, A296621.
%K A296525 nonn,tabf,more,hard
%O A296525 2,1
%A A296525 _Hugo Pfoertner_, Dec 14 2017
%E A296525 a(46) corresponding to the quintic graph on 16 nodes from _Hugo Pfoertner_, Dec 19 2017