This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296530 #20 Feb 16 2025 08:33:52 %S A296530 1,1,1,1,2,2,5,10,28,24,50,124,283,528,1266,3715,10702,8740,15414, %T A296530 31988,68465,160964,380124,890738,2230219,3990852,8354276,20281732, %U A296530 46056920,131289988,349369117,1054037937,3081527146,2440225484,4201202020,7475926894,13276918426 %N A296530 Number of non-averaging permutations of [n] with first element n. %C A296530 A non-averaging permutation avoids any 3-term arithmetic progression. %C A296530 a(0) = 1 by convention. %H A296530 Alois P. Heinz, <a href="/A296530/b296530.txt">Table of n, a(n) for n = 0..99</a> %H A296530 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NonaveragingSequence.html">Nonaveraging Sequence</a> %H A296530 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a> %H A296530 <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a> %F A296530 a(n) = A296529(n,n). %e A296530 a(4) = 2: 4213, 4231. %e A296530 a(5) = 2: 51324, 51342. %e A296530 a(6) = 5: 621453, 624153, 624315, 624351, 624513. %e A296530 a(7) = 10: 7312564, 7315264, 7315426, 7315462, 7315624, 7351264, 7351426, 7351462, 7351624, 7356124. %p A296530 b:= proc(s) option remember; local n, r, ok, i, j, k; %p A296530 if nops(s) = 1 then 1 %p A296530 else n, r:= max(s), 0; %p A296530 for j in s minus {n} do ok, i, k:= true, j-1, j+1; %p A296530 while ok and i>=0 and k<n do ok, i, k:= %p A296530 not i in s xor k in s, i-1, k+1 od; %p A296530 r:= r+ `if`(ok, b(s minus {j}), 0) %p A296530 od; r %p A296530 fi %p A296530 end: %p A296530 a:= n-> b({$0..n} minus {n-1}): %p A296530 seq(a(n), n=0..30); %t A296530 b[s_] := b[s] = Module[{n = Max[s], r = 0, ok, i, j, k}, If[Length[s] == 1, 1, Do[{ok, i, k} = {True, j - 1, j + 1}; While[ok && i >= 0 && k < n, {ok, i, k} = {FreeQ[s, i] ~Xor~ MemberQ[s, k], i - 1, k + 1}]; r = r + If[ok, b[s ~Complement~ {j}], 0], {j, s ~Complement~ {n}}]; r]]; %t A296530 a[n_] := b[Complement[Range[0, n], {n - 1}]] %t A296530 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *) %Y A296530 Main diagonal of A296529. %Y A296530 Cf. A003407, A292523. %K A296530 nonn %O A296530 0,5 %A A296530 _Alois P. Heinz_, Dec 14 2017