This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296546 #27 Jun 02 2025 12:23:21 %S A296546 1,8,15,24,16,27,108,324,774,1620,2268,1584,64,396,1728,7200,27648, %T A296546 87480,232704,476928,663552,463104,125,1050,6000,35800,198000,977400, %U A296546 4392000,17068320,56376000,151632000,311040000,430272000,299289600 %N A296546 Triangle read by rows T(n,k): number of undirected cycles of length k in the complete tripartite graph K_{n,n,n} (n = 1...; k = 3..3n). %H A296546 Eric W. Weisstein, <a href="/A296546/b296546.txt">Table of n, a(n) for n = 1..117</a> (rows n = 1..9, flattened). %H A296546 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclePolynomial.html">Cycle Polynomial</a>. %H A296546 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a>. %F A296546 Row sums of T(n,k) give A234616(n). %e A296546 Written as cycle polynomials: %e A296546 x^3 %e A296546 8 x^3 + 15 x^4 + 24 x^5 + 16 x^6 %e A296546 27 x^3 + 108 x^4 + 324 x^5 + 774 x^6 + 1620 x^7 + 2268 x^8 + 1584 x^9 %e A296546 64 x^3 + 396 x^4 + 1728 x^5 + 7200 x^6 + 27648 x^7 + 87480 x^8 + 232704 x^9 + 476928 x^10 + 663552 x^11 + 463104 x^12 %e A296546 giving the array %e A296546 1 %e A296546 8, 15, 24, 16 %e A296546 27, 108, 324, 774, 1620, 2268, 1584 %e A296546 64, 396, 1728, 7200, 27648, 87480, 232704, 476928, 663552, 463104 %t A296546 Table[Tally[Length /@ FindCycle[CompleteGraph[{n, n, n}], Infinity, All]][[All, 2]], {n, 4}] // Flatten %Y A296546 Cf. A234616 (number of undirected cycles in K_{n,n,n}). %Y A296546 Cf. A144151 (cycle polynomial coefficients of complete graph K_n). %Y A296546 Cf. A291909 (cycle polynomial coefficients of complete bipartite graph K_{n,n}). %K A296546 nonn,tabf %O A296546 1,2 %A A296546 _Eric W. Weisstein_, Dec 15 2017