A296556 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 11, 23, 45, 81, 141, 239, 400, 661, 1085, 1772, 2885, 4687, 7604, 12325, 19965, 32328, 52333, 84704, 137082, 221833, 358964, 580848, 939865, 1520768, 2460690, 3981517, 6442268, 10423848, 16866181, 27290096, 44156346, 71446513, 115602932, 187049520
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(2) + 2 = 11 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296556 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments