A296557 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 11, 21, 36, 61, 102, 168, 275, 448, 728, 1181, 1914, 3100, 5019, 8125, 13150, 21281, 34437, 55724, 90167, 145897, 236070, 381973, 618049, 1000028, 1618083, 2618117, 4236206, 6854330, 11090543, 17944880, 29035430, 46980317, 76015754, 122996078
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(2) - 2 = 6 Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - n; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296557 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments