A296558 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 7, 13, 24, 41, 69, 114, 187, 306, 498, 809, 1312, 2126, 3443, 5574, 9022, 14601, 23628, 38235, 61869, 100110, 161985, 262101, 424092, 686199, 1110297, 1796502, 2906805, 4703313, 7610124, 12313443, 19923573, 32237022, 52160601, 84397630, 136558238
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(2) - 2 = 7 Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - n; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296558 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments