cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296568 Decimal expansion of limiting power-ratio for A294557; see Comments.

This page as a plain text file.
%I A296568 #8 Jan 07 2018 10:51:22
%S A296568 3,6,8,4,1,4,0,9,6,3,5,0,7,1,4,3,0,4,8,9,3,4,9,9,8,7,0,9,4,3,3,9,8,3,
%T A296568 2,1,8,5,0,7,1,3,4,7,6,0,3,4,5,1,0,3,4,9,8,0,8,8,6,8,7,6,5,9,1,0,0,0,
%U A296568 8,3,6,4,2,0,6,9,0,2,9,5,4,8,8,5,7,4
%N A296568 Decimal expansion of limiting power-ratio for A294557; see Comments.
%C A296568 Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A294557, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.
%e A296568 limiting power-ratio = 3.684140963507143048934998709433983218507...
%t A296568 a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
%t A296568 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
%t A296568 j = 1; While[j < 13, k = a[j] - j - 1;
%t A296568 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
%t A296568 Table[a[n], {n, 0, k}]; (* A294557 *)
%t A296568 z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
%t A296568 StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
%t A296568 Take[RealDigits[Last[h], 10][[1]], 120]   (* A296568 *)
%Y A296568 Cf. A001622, A294557, A296469, A296567.
%K A296568 nonn,easy,cons
%O A296568 1,1
%A A296568 _Clark Kimberling_, Dec 20 2017