cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296603 Number of faces a Johnson solid can have.

This page as a plain text file.
%I A296603 #8 Jan 26 2024 15:15:12
%S A296603 5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,24,26,27,30,32,34,37,
%T A296603 42,47,52,62
%N A296603 Number of faces a Johnson solid can have.
%C A296603 Distinct terms in A242731, sorted.
%C A296603 n is a member if and only if A296604(n) > 0.
%H A296603 Norman W. Johnson, <a href="http://dx.doi.org/10.4153/CJM-1966-021-8">Convex Polyhedra with Regular Faces</a>, Canadian Journal of Mathematics, 18 (1966), 169-200.
%H A296603 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JohnsonSolid.html">Johnson Solid</a>.
%H A296603 Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_Johnson_solids">List of Johnson solids</a>.
%H A296603 Victor A. Zalgaller, <a href="http://mi.mathnet.ru/eng/znsl1408">Convex Polyhedra with Regular Faces</a>, Zap. Nauchn. Sem. LOMI, 1967, Volume 2. Pages 5-221 (Mi znsl1408).
%e A296603 The square pyramid is the Johnson solid with the fewest faces, namely, 5, so a(1) = 5.
%Y A296603 Cf. A181708, A242731, A296602, A296604.
%K A296603 nonn,fini,full
%O A296603 1,1
%A A296603 _Jonathan Sondow_, Jan 28 2018