cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296605 Rectangle read by rows: T(n,k) is the number of n X n diagonalizable matrices over GF(3) that have exactly k distinct eigenvalues, n >= 0, 0 <= k <= 3.

This page as a plain text file.
%I A296605 #22 Aug 02 2018 15:26:40
%S A296605 1,0,0,0,0,3,0,0,0,3,36,0,0,3,702,1404,0,3,38070,379080,0,3,5351346,
%T A296605 341368830,0,3,2434569858,1231457092866,0,3,2987199920970,
%U A296605 17481694843567584,0,3,11966842794993066,1077553466091961763220
%N A296605 Rectangle read by rows: T(n,k) is the number of n X n diagonalizable matrices over GF(3) that have exactly k distinct eigenvalues, n >= 0, 0 <= k <= 3.
%H A296605 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.
%H A296605 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%F A296605 T(n,k)/A053290(n) is the coefficient of y^(3-k)*x^n in the expansion of (-1 + y + Sum_{n>=0} x^n/A053290(n))^3.
%e A296605 Array begins:
%e A296605   1, 0,       0,         0,
%e A296605   0, 3,       0,         0,
%e A296605   0, 3,      36,         0,
%e A296605   0, 3,     702,      1404,
%e A296605   0, 3,   38070,    379080,
%e A296605   0, 3, 5351346, 341368830
%t A296605 nn = 8; g[ n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[
%t A296605     QFactorial[n, q]] /. q -> 3; G[u_, z_] := Sum[z^k/\[Gamma][k], {k, 0, nn}] - 1 + u ; Grid[Map[Reverse,Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[G[u, z]^3, {z, 0, nn}], {z, u}]]]
%Y A296605 Cf. A290516 (row sums).
%K A296605 nonn,tabf
%O A296605 0,6
%A A296605 _Geoffrey Critzer_, Dec 16 2017