cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296607 a(n) = BarnesG(2*n).

This page as a plain text file.
%I A296607 #12 Jul 24 2025 13:37:08
%S A296607 0,1,2,288,24883200,5056584744960000,6658606584104736522240000000,
%T A296607 127313963299399416749559771247411200000000000,
%U A296607 69113789582492712943486800506462734562847413501952000000000000000
%N A296607 a(n) = BarnesG(2*n).
%H A296607 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>.
%H A296607 Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>
%F A296607 a(n) = A^3 * exp(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG(n) * BarnesG(n + 1/2)^2 * BarnesG(n+1), where A is the Glaisher-Kinkelin constant A074962.
%F A296607 a(n) ~ 2^(2*n^2 - n - 1/12) * exp(1/12 + 2*n - 3*n^2) * n^(2*n^2 - 2*n + 5/12) * Pi^(n - 1/2) / A, where A is the Glaisher-Kinkelin constant A074962.
%F A296607 a(n) = A000178(2*n-2), n>0. - _R. J. Mathar_, Jul 24 2025
%t A296607 Table[BarnesG[2*n], {n, 0, 10}]
%t A296607 Table[Glaisher^3 * E^(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG[n] * BarnesG[n + 1/2]^2 * BarnesG[n+1], {n, 0, 10}]
%Y A296607 Cf. A000178, A098694, A296591, A296608, A306635.
%K A296607 nonn
%O A296607 0,3
%A A296607 _Vaclav Kotesovec_, Dec 16 2017