This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296615 #11 Dec 20 2017 12:13:24 %S A296615 1,9,8,19,18,26,27,91,38,39,47,46,53,52,60,61,64,65,73,72,83,82,90, %T A296615 130,131,139,138,145,144,152,153,217,164,124,103,102,110,111,116,117, %U A296615 125,165,173,172,183,182,190,191,194,195,203,202,209,208,216,399,343 %N A296615 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, a(n) XOR a(n+1) is a cube (where XOR denotes the XOR binary operator). %C A296615 This sequence has similarities with A175428: here a(n) XOR a(n+1) is a cube, there a(n) + a(n+1) is a cube. %C A296615 This sequence is conjectured to the a permutation of the natural numbers. %C A296615 The first fixed points are: 1, 5676, 5677, 5698, 11677, 13226, 26943, 26946, 27575, 28039, 28569, 28625, 30127, 30162, 37660, 37661, 44672, 44673, 45934. %C A296615 The scatterplot of the first terms of the sequence shows hatches (see Links section). %H A296615 Rémy Sigrist, <a href="/A296615/b296615.txt">Table of n, a(n) for n = 1..10000</a> %H A296615 Rémy Sigrist, <a href="/A296615/a296615.png">Scatterplot of the first 50000 terms</a> %e A296615 The first terms, alongside a(n) XOR a(n+1), are: %e A296615 n a(n) a(n) XOR a(n+1) %e A296615 -- ---- --------------- %e A296615 1 1 2^3 %e A296615 2 9 1^3 %e A296615 3 8 3^3 %e A296615 4 19 1^3 %e A296615 5 18 2^3 %e A296615 6 26 1^3 %e A296615 7 27 4^3 %e A296615 8 91 5^3 %e A296615 9 38 1^3 %e A296615 10 39 2^3 %e A296615 11 47 1^3 %e A296615 12 46 3^3 %e A296615 13 53 1^3 %e A296615 14 52 2^3 %e A296615 15 60 1^3 %e A296615 16 61 5^3 %e A296615 17 64 1^3 %e A296615 18 65 2^3 %e A296615 19 73 1^3 %e A296615 20 72 3^3 %o A296615 (PARI) seen = 0; unseen = 1 %o A296615 other(p) = seen += 2^p; while (bittest(seen, unseen), unseen++); \ %o A296615 for (v=unseen, oo, if (!bittest(seen, v) && ispower(bitxor(p,v),3), return (v))) %o A296615 for (n=1, 57, v=if (n==1, 1, other(v)); print1 (v ", ")) %Y A296615 Cf. A000578, A175428. %K A296615 nonn,base %O A296615 1,2 %A A296615 _Rémy Sigrist_, Dec 17 2017