A296616 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, the binary expansion of a(n) * a(n + 1) starts with the binary expansion of n.
1, 2, 4, 3, 6, 7, 14, 8, 16, 9, 18, 5, 10, 11, 21, 12, 22, 13, 23, 27, 24, 28, 26, 29, 53, 31, 54, 32, 56, 17, 57, 35, 15, 36, 61, 37, 63, 19, 64, 39, 33, 20, 34, 41, 69, 42, 71, 43, 72, 44, 73, 45, 74, 46, 38, 47, 77, 48, 78, 49, 79, 25, 40, 51, 81, 52, 82
Offset: 1
Examples
The first terms, alongside the binary representations of n and a(n) * a(n + 1), are: n a(n) bin(n) bin(a(n)*a(n+1)) -- ---- ------ ---------------- 1 1 1 10 2 2 10 1000 3 4 11 1100 4 3 100 10010 5 6 101 101010 6 7 110 1100010 7 14 111 1110000 8 8 1000 10000000 9 16 1001 10010000 10 9 1010 10100010 11 18 1011 1011010 12 5 1100 110010 13 10 1101 1101110 14 11 1110 11100111 15 21 1111 11111100 16 12 10000 100001000 17 22 10001 100011110 18 13 10010 100101011 19 23 10011 1001101101 20 27 10100 1010001000
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, C++ program for A296616
- Rémy Sigrist, Colored scatterplot of the first 100000 terms (where the color is function of Sum_{k=1..n-1} (-1)^k * (A029837(1+a(k)*a(k+1)) - A029837(1+k)))
- Rémy Sigrist, Colored scatterplot of the first 10000 terms (where the color is function of the parity of n)
Comments