cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296627 a(n) = BarnesG(4*n).

This page as a plain text file.
%I A296627 #7 Feb 16 2025 08:33:52
%S A296627 0,2,24883200,6658606584104736522240000000,
%T A296627 69113789582492712943486800506462734562847413501952000000000000000
%N A296627 a(n) = BarnesG(4*n).
%H A296627 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>.
%H A296627 Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>.
%F A296627 a(n) = A^15 * exp(-5/4) * 2^(7/3 - 14*n + 16*n^2) * Pi^(3/2 - 6*n) * BarnesG(n) * BarnesG(1/4 + n)^2 * BarnesG(1/2 + n)^3 * BarnesG(3/4 + n)^4 * BarnesG(1 + n)^3 * BarnesG(5/4 + n)^2 * BarnesG(3/2 + n), where A is the Glaisher-Kinkelin constant A074962.
%F A296627 a(n) ~ 2^(16*n^2 - 6*n + 1/3) * n^(8*n^2 - 4*n + 5/12) * Pi^(2*n - 1/2) / (A * exp(12*n^2 - 4*n - 1/12)), where A is the Glaisher-Kinkelin constant A074962.
%t A296627 Table[BarnesG[4*n], {n, 0, 6}]
%t A296627 Round[Table[Glaisher^15 * E^(-5/4) * 2^(7/3 - 14*n + 16*n^2) * Pi^(3/2 - 6*n) * BarnesG[n] * BarnesG[1/4 + n]^2 * BarnesG[1/2 + n]^3 * BarnesG[3/4 + n]^4 * BarnesG[1 + n]^3 * BarnesG[5/4 + n]^2 * BarnesG[3/2 + n], {n, 0, 6}]]
%Y A296627 Cf. A000178, A296607, A296608.
%K A296627 nonn
%O A296627 0,2
%A A296627 _Vaclav Kotesovec_, Dec 17 2017