cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A296774 Triangle read by rows in which row n lists the compositions of n ordered first by length and then reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 2, 3, 1, 4, 3, 1, 1, 2, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2017

Keywords

Examples

			Triangle of compositions begins:
(1),
(2),(11),
(3),(21),(12),(111),
(4),(31),(22),(13),(211),(121),(112),(1111),
(5),(41),(32),(23),(14),(311),(221),(212),(131),(122),(113),(2111),(1211),(1121),(1112),(11111).
		

Crossrefs

Programs

  • Mathematica
    Table[Sort[Join@@Permutations/@IntegerPartitions[n],Or[Length[#1]
    				

A294859 Triangle whose n-th row is the concatenated sequence of all Lyndon compositions of n in lexicographic order.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 1, 2, 1, 3, 4, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 3, 2, 1, 5, 2, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2017

Keywords

Examples

			Triangle of Lyndon compositions begins:
(1),
(2),
(12),(3),
(112),(13),(4),
(1112),(113),(122),(14),(23),(5),
(11112),(1113),(1122),(114),(123),(132),(15),(24),(6),
(111112),(11113),(11122),(1114),(11212),(1123),(1132),(115),(1213),(1222),(124),(133),(142),(16),(223),(25),(34),(7).
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n],LyndonQ],OrderedQ[PadRight[{#1,#2}]]&],{n,7}]

Formula

Row n is a concatenation of A059966(n) Lyndon words with total length A000740(n).

A296772 Triangle read by rows in which row n lists the compositions of n ordered first by decreasing length and then reverse-lexicographically.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 3, 4, 1, 3, 2, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2017

Keywords

Comments

The ordering of compositions in each row is consistent with the reverse-Mathematica ordering of expressions (cf. A124734).
Length of k-th composition is A124748(k-1)+1. - Andrey Zabolotskiy, Dec 20 2017

Examples

			Triangle of compositions begins:
(1),
(11),(2),
(111),(21),(12),(3),
(1111),(211),(121),(112),(31),(22),(13),(4),
(11111),(2111),(1211),(1121),(1112),(311),(221),(212),(131),(122),(113),(41),(32),(23),(14),(5).
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[Sort[Join@@Permutations/@IntegerPartitions[n]]],{n,6}]

A296773 Triangle read by rows in which row n lists the compositions of n ordered first by decreasing length and then lexicographically.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 4, 2, 3, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2017

Keywords

Examples

			Triangle of compositions begins:
(1),
(11),(2),
(111),(12),(21),(3),
(1111),(112),(121),(211),(13),(22),(31),(4),
(11111),(1112),(1121),(1211),(2111),(113),(122),(131),(212),(221),(311),(14),(23),(32),(41),(5).
		

Crossrefs

Programs

  • Mathematica
    Table[Sort[Join@@Permutations/@IntegerPartitions[n],Or[Length[#1]>Length[#2],Length[#1]===Length[#2]&&OrderedQ[{#1,#2}]]&],{n,6}]

A296976 List of normal Lyndon sequences ordered first by length and then reverse-lexicographically, where a finite sequence is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 1, 2, 1, 4, 3, 2, 1, 4, 2, 3, 1, 3, 4, 2, 1, 3, 3, 2, 1, 3, 2, 4, 1, 3, 2, 3, 1, 3, 2, 2, 1, 2, 4, 3, 1, 2, 3, 4, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2017

Keywords

Comments

Row n is formed by A060223(n) sequences and has length A296975(n).

Examples

			Triangle of normal Lyndon sequences begins:
1,
12,
132,123,122,112,
1432,1423,1342,1332,1324,1323,1322,1243,1234,1233,1232,1223,1222,1213,1132,1123,1122,1112.
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    normseqs[n_]:=Union@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Select[Reverse@normseqs@n,LyndonQ],{n,5}]

A296977 List of normal Lyndon sequences ordered first by length and then lexicographically, where a finite sequence is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3, 4, 1, 2, 4, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 2, 4, 1, 3, 3, 2, 1, 3, 4, 2, 1, 4, 2, 3, 1, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2017

Keywords

Comments

Row n is formed by A060223(n) sequences and has length A296975(n).

Examples

			Triangle of normal Lyndon sequences begins:
1,
12,
112,122,123,132,
1112,1122,1123,1132,1213,1222,1223,1232,1233,1234,1243,1322,1323,1324,1332,1342,1423,1432.
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    normseqs[n_]:=Union@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Select[normseqs[n],LyndonQ],{n,5}]
Showing 1-6 of 6 results.