cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296658 Length of the standard Lyndon word factorization of the first n terms of A000002.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4, 5, 3, 3, 4, 5, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 5, 6, 5, 6, 7, 6, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 7, 6, 7, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 7, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2017

Keywords

Examples

			The standard Lyndon word factorization of (12211212212211211) is (122)(112122122)(112)(1)(1), so a(17) = 5.
The standard factorizations of initial terms of A000002:
1
12
122
122,1
122,1,1
122,112
122,112,1
122,11212
122,112122
122,112122,1
122,11212212
122,112122122
122,112122122,1
122,112122122,1,1
122,112122122,112
122,112122122,112,1
122,112122122,112,1,1
122,112122122,112,112
122,112122122,1121122
122,112122122,1121122,1
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]];
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],Part[q,-2],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
    Table[Length[qit[Nest[kolagrow,1,n]]],{n,150}]