A296658 Length of the standard Lyndon word factorization of the first n terms of A000002.
1, 1, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 5, 4, 5, 3, 3, 4, 5, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 5, 6, 5, 6, 7, 6, 4, 5, 4, 4, 5, 6, 5, 6, 4, 4, 5, 4, 4, 5, 6, 5, 6, 7, 6, 7, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 5, 6, 7, 6
Offset: 1
Keywords
Examples
The standard Lyndon word factorization of (12211212212211211) is (122)(112122122)(112)(1)(1), so a(17) = 5. The standard factorizations of initial terms of A000002: 1 12 122 122,1 122,1,1 122,112 122,112,1 122,11212 122,112122 122,112122,1 122,11212212 122,112122122 122,112122122,1 122,112122122,1,1 122,112122122,112 122,112122122,112,1 122,112122122,112,1,1 122,112122122,112,112 122,112122122,1121122 122,112122122,1121122,1
Links
- Frédérique Bassino, Julien Clement, and Cyril Nicaud, The standard factorization of Lyndon words: an average point of view, Discrete Mathematics, 290-1 (2005), 1-25.
Crossrefs
Programs
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]]; kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],Part[q,-2],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]; Table[Length[qit[Nest[kolagrow,1,n]]],{n,150}]