cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296659 Length of the final word in the standard Lyndon word factorization of the first n terms of A000002.

This page as a plain text file.
%I A296659 #8 Jan 22 2020 07:20:45
%S A296659 1,2,3,1,1,3,1,5,6,1,8,9,1,1,3,1,1,3,7,1,9,1,1,3,1,14,15,1,1,3,1,1,3,
%T A296659 1,8,9,1,11,12,1,1,3,1,17,18,1,20,1,1,3,1,1,3,27,1,29,30,1,1,3,1,35,
%U A296659 36,1,38,39,1,1,3,1,1,3,1,8,9,1,11,1,1,3,15,1
%N A296659 Length of the final word in the standard Lyndon word factorization of the first n terms of A000002.
%H A296659 Frédérique Bassino, Julien Clement, and Cyril Nicaud, <a href="https://doi.org/10.1016/j.disc.2004.11.002">The standard factorization of Lyndon words: an average point of view</a>, Discrete Mathematics, 290-1, (2005), 1-25.
%e A296659 The sequence of final words begins: 1, 12, 122, 1, 1, 112, 1, 11212, 112122, 1, 11212212, 112122122, 1, 1, 112, 1, 1, 112, 1121122, 1, 112112212, 1, 1, 112, 1, 11211221211212, 112112212112122, 1, 1, 112.
%t A296659 LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
%t A296659 qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]];
%t A296659 kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],Part[q,-2],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
%t A296659 Table[Length[Last[qit[Nest[kolagrow,1,n]]]],{n,150}]
%Y A296659 Cf. A000002, A027375, A088568, A102659, A228369, A281013, A288605, A296372, A296657, A296658.
%K A296659 nonn
%O A296659 1,2
%A A296659 _Gus Wiseman_, Dec 18 2017