This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296662 #16 Mar 08 2020 04:58:25 %S A296662 1,2,3,2,5,9,10,9,5,14,28,34,35,34,28,14,42,90,117,125,126,125,117,90, %T A296662 42,132,297,407,451,461,462,461,451,407,297,132,429,1001,1430,1638, %U A296662 1703,1715,1716,1715,1703,1638,1430,1001,429 %N A296662 Table read by rows, the odd rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n. %C A296662 Let v be the characteristic function of 1 (A063524) and M(n) for n >= 0 the symmetric Toeplitz matrix generated by the initial segment of v, then row n is the diagonal next to the main diagonal of M(2n+1)^(2n+1). %F A296662 T(n, n) = A001700(n). %F A296662 T(n, 0) = T(n, 2*n) = A000108(n+1). %F A296662 T(n, k) = binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1) for k=0..n. %F A296662 T(n, k) = binomial(2*n+1, n+1) - binomial(2*n+1, k-n-1) for k=n+1..2*n and n>0. %e A296662 The triangle starts: %e A296662 0: [ 1] %e A296662 1: [ 2, 3, 2] %e A296662 2: [ 5, 9, 10, 9, 5] %e A296662 3: [ 14, 28, 34, 35, 34, 28, 14] %e A296662 4: [ 42, 90, 117, 125, 126, 125, 117, 90, 42] %e A296662 5: [132, 297, 407, 451, 461, 462, 461, 451, 407, 297, 132] %p A296662 v := n -> `if`(n=1, 1, 0): %p A296662 B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j),j=0..n)], symmetric): %p A296662 seq(convert(ArrayTools:-Diagonal(B(2*n+1)^(2*n+1), 1),list), n=0..6); %t A296662 v[n_] := If[n == 1, 1, 0]; %t A296662 m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n]; %t A296662 d[n_] := Diagonal[m[2 n + 1], 1]; %t A296662 Table[d[n], {n, 0, 6}] // Flatten %o A296662 (Sage) %o A296662 def T(n, k): %o A296662 if k > n: %o A296662 b = binomial(2*n+1, k - n - 1) %o A296662 else: %o A296662 b = binomial(2*n+1, n - k - 1) %o A296662 return binomial(2*n+1, n+1) - b %o A296662 for n in (0..6): %o A296662 print([T(n, k) for k in (0..2*n)]) %Y A296662 Cf. A000108, A001700, A050158, A296664, A296666, A296769 (row sums). %K A296662 nonn,tabf %O A296662 0,2 %A A296662 _Peter Luschny_, Dec 20 2017