cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296664 Table read by rows, diagonals of powers of Toeplitz matrices generated by the characteristic function of 1, T(n, k) for n >= 0 and 0 <= k <= 2*floor(n/2).

This page as a plain text file.
%I A296664 #25 Mar 08 2020 05:00:21
%S A296664 1,1,1,2,1,2,3,2,2,5,6,5,2,5,9,10,9,5,5,14,19,20,19,14,5,14,28,34,35,
%T A296664 34,28,14,14,42,62,69,70,69,62,42,14,42,90,117,125,126,125,117,90,42,
%U A296664 42,132,207,242,251,252,251,242,207,132,42
%N A296664 Table read by rows, diagonals of powers of Toeplitz matrices generated by the characteristic function of 1, T(n, k) for n >= 0 and 0 <= k <= 2*floor(n/2).
%C A296664 Let v be the characteristic function of 1 (A063524) and M(n) for n >= 0 the symmetric Toeplitz matrix generated by the initial segment of v, then row n is the main diagonal of M(n)^n if n is even or the diagonal next to the main diagonal if n is odd. Note that the antidiagonals of M(n)^n are the rows of Pascal's triangle A007318.
%F A296664 T(n, 0) = T(n, 2*floor(n/2)) = A208355(n) = A000108(floor((n+1)/2)).
%F A296664 T(n, floor(n/2)) = A001405(n).
%F A296664 Further formulas can be found in A296662 and A296666 for the cases n odd and n even.
%e A296664 The first few matrices M(n)^n are:
%e A296664 n=0   n=1     n=2       n=3         n=4
%e A296664 |1|  |0 1|  |1 0 1|  |0 2 0 1|  |2 0 3 0 1|
%e A296664      |1 0|  |0 2 0|  |2 0 3 0|  |0 5 0 4 0|
%e A296664             |1 0 1|  |0 3 0 2|  |3 0 6 0 3|
%e A296664                      |1 0 2 0|  |0 4 0 5 0|
%e A296664                                 |1 0 3 0 2|
%e A296664 The triangle starts:
%e A296664 0: [ 1]
%e A296664 1: [ 1]
%e A296664 2: [ 1,  2,   1]
%e A296664 3: [ 2,  3,   2]
%e A296664 4: [ 2,  5,   6,   5,   2]
%e A296664 5: [ 5,  9,  10,   9,   5]
%e A296664 6: [ 5, 14,  19,  20,  19,  14,  5]
%e A296664 7: [14, 28,  34,  35,  34,  28,  14]
%e A296664 8: [14, 42,  62,  69,  70,  69,  62, 42, 14]
%e A296664 9: [42, 90, 117, 125, 126, 125, 117, 90, 42]
%p A296664 v := n -> `if`(n=1, 1, 0):
%p A296664 M := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
%p A296664 seq(convert(ArrayTools:-Diagonal(M(n)^n, n mod 2), list), n=0..10);
%t A296664 v[n_] := If[n == 1, 1, 0];
%t A296664 m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
%t A296664 d[n_] := If[n == 0, {1}, Diagonal[m[n], Mod[n, 2]]];
%t A296664 Table[d[n], {n, 0, 10}] // Flatten
%o A296664 (Sage)
%o A296664 def T(n, k):
%o A296664     h, e = n//2, n%2 == 0
%o A296664     a = binomial(n, h) if e else binomial(2*h+1, h+1)
%o A296664     if k > h:
%o A296664         b = binomial(n, k-h-1) if e else binomial(2*h+1, k-h-1)
%o A296664     else:
%o A296664         b = binomial(n, h+k+1) if e else binomial(2*h+1, h-k-1)
%o A296664     return a - b
%o A296664 for n in (0..9): print([T(n, k) for k in (0..2*(n//2))])
%Y A296664 Cf. A000108, A001405, A208355, A296663 (row sums), A296662 (odd rows), A296666 (even rows).
%K A296664 nonn,tabf
%O A296664 0,4
%A A296664 _Peter Luschny_, Dec 19 2017