This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296666 #33 Mar 07 2020 14:57:22 %S A296666 1,1,2,1,2,5,6,5,2,5,14,19,20,19,14,5,14,42,62,69,70,69,62,42,14,42, %T A296666 132,207,242,251,252,251,242,207,132,42,132,429,704,858,912,923,924, %U A296666 923,912,858,704,429,132 %N A296666 Table read by rows, the even rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n. %C A296666 Let v be the characteristic function of 1 (A063524) and M(n) for n >= 0 the symmetric Toeplitz matrix generated by the initial segment of v, then row n is the main diagonal of M(2n)^(2n). %C A296666 Seems to be A050157 + its reflection. - _Andrey Zabolotskiy_, Dec 19 2017 %H A296666 Peter Luschny, <a href="/A296666/b296666.txt">Row n for n = 0..30</a> %F A296666 T(n, 0) = T(n, 2*n) = A000108(n). %F A296666 T(n, n) are the central binomial coefficients A000984(n). %F A296666 T(n, k) = binomial(2*n, n) - binomial(2*n, n+k+1) for k=0..n. %F A296666 T(n, k) = binomial(2*n, n) - binomial(2*n, k-n-1) for k=n+1..2*n and n>0. %e A296666 0: [ 1] %e A296666 1: [ 1, 2, 1] %e A296666 2: [ 2, 5, 6, 5, 2] %e A296666 3: [ 5, 14, 19, 20, 19, 14, 5] %e A296666 4: [ 14, 42, 62, 69, 70, 69, 62, 42, 14] %e A296666 5: [ 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42] %e A296666 6: [132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132] %p A296666 v := n -> `if`(n=1, 1, 0); %p A296666 B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric): %p A296666 seq(convert(ArrayTools:-Diagonal(B(2*n)^(2*n)), list), n=0..10); %t A296666 v[n_] := If[n == 1, 1, 0]; %t A296666 m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n]; %t A296666 d[n_] := If[n == 0, {1}, Diagonal[m[2 n]]]; %t A296666 Table[d[n], {n, 0, 6}] // Flatten %o A296666 (Sage) %o A296666 def T(n, k): %o A296666 if k > n: %o A296666 b = binomial(2*n, k - n - 1) %o A296666 else: %o A296666 b = binomial(2*n, n + k + 1) %o A296666 return binomial(2*n, n) - b %o A296666 for n in (0..6): %o A296666 print([T(n, k) for k in (0..2*n)]) %Y A296666 Cf. A000108, A000984, A050157, A296662, A296664, A296665 (row sums). %K A296666 nonn,tabf %O A296666 0,3 %A A296666 _Peter Luschny_, Dec 19 2017