This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296696 #9 Jan 28 2023 19:37:40 %S A296696 4,8,9,12,13,14,16,20,32,36,37,40,41,48,52,53,56,57,58,60,61,62,64,68, %T A296696 72,73,76,77,78,80,84,100,116,120,121,128,132,136,137,140,141,142,144, %U A296696 145,146,147,148,149,152,153,156,157,158,160,164,165,168,169 %N A296696 Numbers whose base-4 digits d(m), d(m-1), ... d(0) have #(rises) < #(falls); see Comments. %C A296696 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296694-A296696 partition the natural numbers. See the guide at A296712. %H A296696 Clark Kimberling, <a href="/A296696/b296696.txt">Table of n, a(n) for n = 1..10000</a> %e A296696 The base-4 digits of 196 are 3,0,1,0; here #(rises) = 1 and #(falls) = 2, so 196 is in the sequence. %t A296696 z = 200; b = 4; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296696 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296694 *) %t A296696 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296695 *) %t A296696 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296696 *) %Y A296696 Cf. A296694, A296695, A296712. %K A296696 nonn,base %O A296696 1,1 %A A296696 _Clark Kimberling_, Dec 21 2017 %E A296696 Example corrected by _Harvey P. Dale_, Sep 04 2018