This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296699 #8 Jan 27 2023 19:27:54 %S A296699 5,10,11,15,16,17,20,21,22,23,25,30,50,55,56,60,61,75,80,81,85,86,87, %T A296699 90,91,92,100,105,106,110,111,112,115,116,117,118,120,121,122,123,125, %U A296699 130,135,136,140,141,142,145,146,147,148,150,155,180,205,210,211 %N A296699 Numbers whose base-5 digits d(m), d(m-1), ... d(0) have #(rises) < #(falls); see Comments. %C A296699 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296697-A296699 partition the natural numbers. See the guide at A296712. %H A296699 Clark Kimberling, <a href="/A296699/b296699.txt">Table of n, a(n) for n = 1..10000</a> %e A296699 The base-5 digits of 211 are 1,3,2,1; here #(rises) = 1 and #(falls) = 2, so 211 is in the sequence. %t A296699 z = 200; b = 5; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296699 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296697 *) %t A296699 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296698 *) %t A296699 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296699 *) %Y A296699 Cf. A296697, A296698, A296712. %K A296699 nonn,base %O A296699 1,1 %A A296699 _Clark Kimberling_, Dec 21 2017