This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296704 #7 Jan 27 2023 19:22:38 %S A296704 9,10,11,12,13,17,18,19,20,25,26,27,33,34,41,58,59,60,61,62,65,66,67, %T A296704 68,69,73,74,75,76,81,82,83,89,90,97,115,116,117,118,122,123,124,125, %U A296704 130,131,132,138,139,146,172,173,174,179,180,181,187,188,195,229 %N A296704 Numbers whose base-7 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments. %C A296704 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296703-A296705 partition the natural numbers. See the guide at A296712. %H A296704 Clark Kimberling, <a href="/A296704/b296704.txt">Table of n, a(n) for n = 1..10000</a> %e A296704 The base-7 digits of 229 are 4,4,5; here #(rises) = 1 and #(falls) = 0, so 229 is in the sequence. %t A296704 z = 200; b = 7; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296704 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296703 *) %t A296704 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296704 *) %t A296704 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296705 *) %Y A296704 Cf. A296704, A296705, A296712. %K A296704 nonn,easy,base %O A296704 1,1 %A A296704 _Clark Kimberling_, Jan 08 2018