This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296710 #7 Jan 27 2023 19:23:47 %S A296710 11,12,13,14,15,16,17,21,22,23,24,25,26,31,32,33,34,35,41,42,43,44,51, %T A296710 52,53,61,62,71,92,93,94,95,96,97,98,101,102,103,104,105,106,107,111, %U A296710 112,113,114,115,116,121,122,123,124,125,131,132,133,134,141,142 %N A296710 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments. %C A296710 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296709-A296711 partition the natural numbers. See the guide at A296712. %H A296710 Clark Kimberling, <a href="/A296710/b296710.txt">Table of n, a(n) for n = 1..10000</a> %e A296710 The base-9 digits of 142 are 1,6,7; here #(rises) = 2 and #(falls) = 0, so 142 is in the sequence. %t A296710 z = 200; b = 9; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296710 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296709 *) %t A296710 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296710 *) %t A296710 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296711 *) %Y A296710 Cf. A296709, A296711, A296712. %K A296710 nonn,base,easy %O A296710 1,1 %A A296710 _Clark Kimberling_, Jan 08 2018