This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296712 #7 Jan 27 2023 19:24:14 %S A296712 1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,102,103,104,105,106, %T A296712 107,108,109,111,120,121,130,131,132,140,141,142,143,150,151,152,153, %U A296712 154,160,161,162,163,164,165,170,171,172,173,174,175,176,180,181 %N A296712 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments. %C A296712 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296712-A296714 partition the natural numbers. %C A296712 **** %C A296712 Guide to related sequences: %C A296712 Base #(rises) = #(falls) #(rises) > #(falls) #(rises) < #(falls) %C A296712 2 A005408 (none) A005843 %C A296712 3 A296691 A296692 A296693 %C A296712 4 A296694 A296695 A296696 %C A296712 5 A296697 A296698 A296699 %C A296712 6 A296700 A296701 A296702 %C A296712 7 A296703 A296704 A296705 %C A296712 8 A296706 A296707 A296708 %C A296712 9 A296709 A296710 A296711 %C A296712 10 A296712 A296713 A296714 %C A296712 11 A296744 A296745 A296746 %C A296712 12 A296747 A296748 A296749 %C A296712 13 A296750 A296751 A296752 %C A296712 14 A296753 A296754 A296755 %C A296712 15 A296756 A296757 A296758 %C A296712 16 A296759 A296760 A296761 %C A296712 20 A296762 A296763 A296764 %C A296712 60 A296765 A296766 A296767 %H A296712 Clark Kimberling, <a href="/A296712/b296712.txt">Table of n, a(n) for n = 1..10000</a> %e A296712 The base-10 digits of 181 are 1,8,1; here #(rises) = 1 and #(falls) = 1, so 181 is in the sequence. %t A296712 z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296712 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296712 *) %t A296712 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296713 *) %t A296712 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296714 *) %Y A296712 Cf. A296713, A296714, A296712. %K A296712 nonn,base,easy %O A296712 1,2 %A A296712 _Clark Kimberling_, Jan 08 2018