This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296714 #7 Jan 27 2023 19:24:36 %S A296714 10,20,21,30,31,32,40,41,42,43,50,51,52,53,54,60,61,62,63,64,65,70,71, %T A296714 72,73,74,75,76,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98, %U A296714 100,110,200,210,211,220,221,300,310,311,320,321,322,330,331,332 %N A296714 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments. %C A296714 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296712-A296714 partition the natural numbers. See the guide at A296712. %H A296714 Clark Kimberling, <a href="/A296714/b296714.txt">Table of n, a(n) for n = 1..10000</a> %e A296714 The base-10 digits of 332 are 3,3,2; here #(rises) = 0 and #(falls) = 1, so 332 is in the sequence. %t A296714 z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296714 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296712 *) %t A296714 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296713 *) %t A296714 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296714 *) %Y A296714 Cf. A296712, A296713, A296712. %K A296714 nonn,base,easy %O A296714 1,1 %A A296714 _Clark Kimberling_, Jan 08 2018