This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296754 #7 Jan 27 2023 19:26:17 %S A296754 16,17,18,19,20,21,22,23,24,25,26,27,31,32,33,34,35,36,37,38,39,40,41, %T A296754 46,47,48,49,50,51,52,53,54,55,61,62,63,64,65,66,67,68,69,76,77,78,79, %U A296754 80,81,82,83,91,92,93,94,95,96,97,106,107,108,109,110,111 %N A296754 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments. %C A296754 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296753-A296755 partition the natural numbers. See the guide at A296712. %H A296754 Clark Kimberling, <a href="/A296754/b296754.txt">Table of n, a(n) for n = 1..10000</a> %e A296754 The base-14 digits of 10000000 are 1,12,0,6,0,8; here #(rises) = 3 and #(falls) = 2, so 10000000 is in the sequence. %t A296754 z = 200; b = 14; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296754 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296753 *) %t A296754 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296754 *) %t A296754 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296755 *) %Y A296754 Cf. A296753, A296755, A296712. %K A296754 nonn,base,easy %O A296754 1,1 %A A296754 _Clark Kimberling_, Jan 08 2018