This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296755 #7 Jan 27 2023 19:26:33 %S A296755 14,28,29,42,43,44,56,57,58,59,70,71,72,73,74,84,85,86,87,88,89,98,99, %T A296755 100,101,102,103,104,112,113,114,115,116,117,118,119,126,127,128,129, %U A296755 130,131,132,133,134,140,141,142,143,144,145,146,147,148,149,154 %N A296755 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments. %C A296755 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296753-A296755 partition the natural numbers. See the guide at A296712. %H A296755 Clark Kimberling, <a href="/A296755/b296755.txt">Table of n, a(n) for n = 1..10000</a> %e A296755 The base-14 digits of 10^9 are 9, 6, 11, 4, 11, 6, 11, 6; here #(rises) = 3 and #(falls) = 4, so 10^9 is in the sequence. %t A296755 z = 200; b = 14; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296755 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296753 *) %t A296755 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296754 *) %t A296755 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296755 *) %Y A296755 Cf. A296753, A296754, A296712. %K A296755 nonn,base,easy %O A296755 1,1 %A A296755 _Clark Kimberling_, Jan 08 2018