cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296765 Numbers whose base-60 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 122, 183, 244, 305, 366
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296762-A296764 partition the natural numbers. This sequence differs from A262065; see the example. For a guide to related sequences, see A296712.

Examples

			The base-60 digits of 13406581 are 1, 2, 4, 3, 1; here #(rises) = 2 and #(falls) = 2, so 13406581 is in the sequence.  This sequence is not A262065, as not all the terms in this sequence are palindromes.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 60; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296765 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296766 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296767 *)