This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296766 #7 Jan 22 2023 18:23:31 %S A296766 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84, %T A296766 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105, %U A296766 106,107,108,109,110,111,112,113,114,115,116,117,118,119,123 %N A296766 Numbers whose base-60 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments. %C A296766 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296762-A296764 partition the natural numbers. See the guide at A296712. %H A296766 Clark Kimberling, <a href="/A296766/b296766.txt">Table of n, a(n) for n = 1..10000</a> %e A296766 The base-60 digits of 223381 are 1, 2, 3, 1; here #(rises) = 2 and #(falls) = 1, so 223381 is in the sequence. %t A296766 z = 200; b = 60; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296766 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296765 *) %t A296766 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296766 *) %t A296766 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296767 *) %Y A296766 Cf. A296765, A296767, A296712. %K A296766 nonn,base,easy %O A296766 1,1 %A A296766 _Clark Kimberling_, Jan 08 2018