cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296770 Row sums of A050158.

Original entry on oeis.org

1, 5, 24, 111, 500, 2210, 9632, 41531, 177564, 754014, 3184016, 13382710, 56026984, 233765636, 972504704, 4035441491, 16707488684, 69033916166, 284733161264, 1172510645666, 4821324991064, 19799091571676, 81208982686784, 332726301861086, 1361862906980120
Offset: 0

Views

Author

Peter Luschny, Dec 22 2017

Keywords

Crossrefs

Programs

  • Maple
    A296770 := n -> add(binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1), k=0..n):
    seq(A296770(n), n=0..24);
  • Mathematica
    a[n_] := 4^n ((2 (2 + n) Gamma[3/2 + n])/(Sqrt[Pi] Gamma[2 + n]) - 1);
    Table[a[n], {n, 0, 24}]

Formula

a(n) = Sum_{k=0..n} (binomial(2*n+1, n+1) - binomial(2*n+1, n-k-1)).
a(n) = 4^n*((2*(n + 2)*Gamma(n + 3/2))/(sqrt(Pi)*Gamma(n + 2)) - 1).
a(n) = (n/2+1)*binomial(2*(n+1), n+1) - 4^n.
a(n) ~ 4^n*(2*sqrt(n/Pi) - 1).
a(n) = A002457(n) - A008549(n).