cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296771 Row sums of A050157.

Original entry on oeis.org

1, 3, 13, 58, 257, 1126, 4882, 20980, 89497, 379438, 1600406, 6720748, 28117498, 117254268, 487589572, 2022568168, 8371423177, 34581780478, 142605399982, 587138954428, 2413944555742, 9911778919348, 40650232625212, 166534680737368, 681576405563722
Offset: 0

Views

Author

Peter Luschny, Dec 21 2017

Keywords

Crossrefs

Programs

  • Maple
    A296771 := n -> add(binomial(2*n, n) - binomial(2*n, n+k+1), k=0..n):
    seq(A296771(n), n=0..24);
  • Mathematica
    a[n_] := 4^n ((n - 1/2)! (2 n + 3)/(2 Sqrt[Pi] n!) - 1/2);
    Table[a[n], {n, 0, 24}]
  • PARI
    a(n) = sum(k=0, n, binomial(2*n, n) - binomial(2*n, n+k+1)) \\ Iain Fox, Dec 21 2017

Formula

a(n) = Sum_{k=0..n} (binomial(2*n, n) - binomial(2*n, n+k+1)).
a(n) = 2^(2*n-1)*(((n-1/2)!*(2*n+3))/(sqrt(Pi)*n!) - 1).
a(n) ~ 4^n*(sqrt(n/Pi) - 1/2).
a(n) = A037965(n+1) - A000346(n-1) for n >= 1.
From Robert Israel, Dec 21 2017: (Start)
a(n) = (n+3/2)*binomial(2*n,n) - 2^(2*n-1).
G.f.: (3/2-4*x)*(1-4*x)^(-3/2) - (1/2)*(1-4*x)^(-1).
64*(n+1)*(2*n+1)*a(n)-8*(2*n+3)*(5*n+4)*a(n+1)+2*(n+2)*(8*n+11)*a(n+2)-(n+3)*(n+2)*a(n+3)=0. (End)