A296776 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 2*n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 13, 28, 56, 102, 179, 305, 511, 846, 1391, 2274, 3705, 6022, 9773, 15844, 25669, 41568, 67295, 108924, 176283, 285274, 461627, 746974, 1208678, 1955732, 3164493, 5120311, 8284893, 13405296, 21690284, 35095678, 56786063, 91881845, 148668015, 240549970
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(2) + 4 = 13 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296776 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments