cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A304490 a(1) = a(2) = a(3) = 1, a(4) = 5, a(5) = 6, a(6) = 4; a(n) = a(n-a(n-2)) + a(n-a(n-4)) for n > 6.

Original entry on oeis.org

1, 1, 1, 5, 6, 4, 5, 6, 6, 9, 10, 5, 6, 12, 12, 15, 16, 5, 6, 18, 18, 21, 22, 5, 6, 24, 24, 27, 28, 5, 6, 30, 30, 33, 34, 5, 6, 36, 36, 39, 40, 5, 6, 42, 42, 45, 46, 5, 6, 48, 48, 51, 52, 5, 6, 54, 54, 57, 58, 5, 6, 60, 60, 63, 64, 5, 6, 66, 66, 69, 70, 5, 6, 72, 72, 75, 76, 5, 6, 78, 78, 81, 82, 5, 6
Offset: 1

Views

Author

Altug Alkan, May 13 2018

Keywords

Comments

A quasi-periodic solution to the recurrence a(n) = a(n-a(n-2)) + a(n-a(n-4)). Although A087777 and A240809 are highly chaotic, this sequence is completely predictable thanks to its initial conditions.

Crossrefs

Programs

  • PARI
    q=vector(85); q[1]=1;q[2]=1;q[3]=1;q[4]=5;q[5]=6;q[6]=4; for(n=7, #q, q[n] = q[n-q[n-2]]+q[n-q[n-4]]); q

Formula

a(6*k) = 5, a(6*k+1) = 6, a(6*k+2) = a(6*k+3) = 6*k, a(6*k+4) = 6*k+3, a(6*k+5) = 6*k+4 for k > 1.
Conjectures from Colin Barker, May 14 2018: (Start)
G.f.: x*(1 - x + 2*x^2 + 2*x^3 + 2*x^5 - x^6 + 4*x^7 - 3*x^8 + x^9 - x^10 - 2*x^11 + 2*x^12 - x^13 + x^14 + x^15 - x^16) / ((1 - x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 5*a(n-4) + 6*a(n-5) - 5*a(n-6) + 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - a(n-10) for n>17.
(End)
Showing 1-1 of 1 results.