This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296788 #7 Dec 21 2017 06:29:47 %S A296788 1,2,8,54,104,18810,-1648428,247726374,-49445941200,12841169289714, %T A296788 -4206667789245780,1697448414191239710,-827415782970517712376, %U A296788 479396168140498731959850,-325673237888367403728512700,256401822876859593450127851030,-231597610351491427264049084814240 %N A296788 Expansion of e.g.f. exp(x*arcsinh(x)) (even powers only). %F A296788 a(n) = (2*n)! * [x^(2*n)] exp(x*arcsinh(x)). %F A296788 a(n) ~ -(-1)^n * 2^(2*n) * n^(2*n-1) / exp(2*n + Pi/2). - _Vaclav Kotesovec_, Dec 21 2017 %e A296788 exp(x*arcsinh(x)) = 1 + 2*x^2/2! + 8*x^4/4! + 54*x^6/6! + 104*x^8/8! + ... %t A296788 nmax = 16; Table[(CoefficientList[Series[Exp[x ArcSinh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] %t A296788 nmax = 16; Table[(CoefficientList[Series[(x + Sqrt[1 + x^2])^x, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] %Y A296788 Cf. A001818, A006228, A009214, A009233, A079484, A259647, A296787, A296789. %K A296788 sign %O A296788 0,2 %A A296788 _Ilya Gutkovskiy_, Dec 20 2017