cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A296829 Number of nX3 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.

Original entry on oeis.org

5, 14, 43, 132, 402, 1230, 3755, 11475, 35054, 107091, 327180, 999540, 3053674, 9329255, 28501469, 87074210, 266018951, 812707666, 2482885810, 7585415532, 23174032657, 70798497487, 216295031546, 660798311057, 2018791013454
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Column 3 of A296834.

Examples

			Some solutions for n=7
..0..0..0. .0..1..0. .0..1..1. .0..0..0. .0..1..0. .1..0..1. .0..1..0
..0..1..0. .0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0
..0..0..0. .1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .1..0..1
..0..0..0. .0..0..1. .1..1..0. .0..1..1. .1..1..0. .0..1..0. .0..0..0
..0..0..1. .0..0..0. .1..1..0. .0..1..1. .1..1..0. .0..0..0. .0..0..0
..1..0..0. .1..1..1. .0..0..0. .0..1..1. .1..1..0. .0..0..0. .0..1..0
..0..0..1. .1..1..1. .1..0..1. .0..0..0. .0..0..0. .0..0..1. .0..0..0
		

Crossrefs

Cf. A296834.

Formula

Empirical: a(n) = 4*a(n-2) +20*a(n-3) +13*a(n-4) -27*a(n-5) -98*a(n-6) -115*a(n-7) -77*a(n-8) -13*a(n-9) -7*a(n-10) -15*a(n-11) -24*a(n-12) -4*a(n-13) +2*a(n-14) +4*a(n-15)

A296830 Number of nX4 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.

Original entry on oeis.org

8, 31, 132, 573, 2441, 10485, 44951, 192730, 826498, 3544082, 15198081, 65172170, 279476178, 1198478073, 5139392105, 22039266498, 94511169171, 405291983276, 1738017670081, 7453162043129, 31961457203015, 137060728087293
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Column 4 of A296834.

Examples

			Some solutions for n=7
..1..0..0..0. .0..1..0..0. .0..0..1..0. .1..0..1..1. .1..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0
..0..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0. .1..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..1
..0..0..0..0. .1..0..0..1. .0..0..0..1. .0..0..0..1. .1..1..0..0
..1..1..1..1. .0..0..0..0. .0..1..0..0. .0..0..0..0. .1..1..0..0
..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1
		

Crossrefs

Cf. A296834.

Formula

Empirical: a(n) = 4*a(n-1) +4*a(n-2) +36*a(n-3) -191*a(n-4) -172*a(n-5) -244*a(n-6) +2863*a(n-7) +2250*a(n-8) -298*a(n-9) -20536*a(n-10) -14014*a(n-11) +8348*a(n-12) +80613*a(n-13) +48318*a(n-14) -35241*a(n-15) -180959*a(n-16) -99366*a(n-17) +73461*a(n-18) +228573*a(n-19) +126168*a(n-20) -72901*a(n-21) -147112*a(n-22) -104887*a(n-23) +8884*a(n-24) +27889*a(n-25) +61467*a(n-26) +45033*a(n-27) +30859*a(n-28) -18608*a(n-29) -33443*a(n-30) -35278*a(n-31) -15633*a(n-32) +3073*a(n-33) +19582*a(n-34) +23473*a(n-35) +7766*a(n-36) -5789*a(n-37) -12917*a(n-38) -5489*a(n-39) +331*a(n-40) +3658*a(n-41) +2145*a(n-42) +389*a(n-43) -593*a(n-44) -675*a(n-45) -214*a(n-46) +38*a(n-47) +148*a(n-48) +72*a(n-49) +24*a(n-50)

A296831 Number of nX5 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.

Original entry on oeis.org

13, 70, 402, 2441, 14379, 85500, 508111, 3017667, 17931240, 106532750, 632991179, 3760963266, 22346554371, 132779031876, 788937821061, 4687716596985, 27853628252239, 165500927720484, 983379261249186, 5843086041423489
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Column 5 of A296834.

Examples

			Some solutions for n=6
..0..0..0..1..0. .0..0..0..0..1. .1..1..0..0..0. .0..0..0..0..0
..1..0..0..0..0. .1..0..0..0..0. .1..1..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..1..0..0. .0..0..0..0..1. .0..0..1..0..1
..1..1..0..1..0. .0..0..0..0..1. .0..1..1..0..0. .0..0..0..0..0
..1..1..0..0..0. .0..0..1..0..0. .0..1..1..0..0. .0..0..0..1..0
..1..1..0..0..0. .0..0..0..0..1. .0..1..1..0..1. .0..1..0..0..0
		

Crossrefs

Cf. A296834.

A296832 Number of nX6 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.

Original entry on oeis.org

21, 157, 1230, 10485, 85500, 706534, 5834429, 48122349, 397252886, 3278636644, 27062747191, 223377950567, 1843848878602, 15220263846832, 125635656973478, 1037081229322655, 8560832928119444, 70667136506972822, 583340972841489677
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Column 6 of A296834.

Examples

			Some solutions for n=5
..1..0..1..0..1..1. .0..0..0..1..1..0. .0..1..1..1..1..1. .0..1..0..1..0..0
..0..0..0..0..1..1. .0..1..1..1..0..1. .0..1..1..1..1..1. .0..0..0..0..0..1
..1..0..0..0..1..1. .0..1..1..0..1..1. .0..0..0..0..0..0. .0..0..0..0..0..0
..0..0..1..0..1..1. .0..0..0..1..1..0. .0..1..1..1..1..0. .1..1..1..1..1..0
..0..0..0..0..1..1. .0..0..0..1..1..0. .0..1..1..1..1..0. .1..1..1..1..1..0
		

Crossrefs

Cf. A296834.

A296833 Number of nX7 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.

Original entry on oeis.org

34, 353, 3755, 44951, 508111, 5834429, 67007971, 768117235, 8815633972, 101151930988, 1160784250565, 13320805118343, 152872860190807, 1754476739053004, 20135403174093836, 231092540344213255
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Column 7 of A296834.

Examples

			Some solutions for n=4
..0..0..0..1..0..0..0. .0..1..0..0..0..1..1. .0..0..0..0..1..0..1
..0..0..0..0..0..0..0. .0..0..0..0..0..1..1. .1..0..1..0..0..0..0
..1..1..1..0..0..0..0. .1..0..1..1..0..0..0. .0..0..0..0..0..0..0
..1..1..1..0..0..0..0. .0..0..1..1..0..1..0. .0..0..0..0..0..1..0
		

Crossrefs

Cf. A296834.

A296828 Number of n X n 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1's.

Original entry on oeis.org

2, 6, 43, 573, 14379, 706534, 67007971, 12228697715, 4321362259224, 2948102949160889
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2017

Keywords

Comments

Diagonal of A296834.

Examples

			Some solutions for n=5
..1..0..0..0..0. .1..0..0..1..0. .0..0..1..0..0. .0..0..0..0..0
..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0. .1..1..0..0..1
..1..0..0..0..0. .0..0..1..0..1. .1..1..0..0..1. .1..1..0..0..0
..0..0..0..0..1. .0..0..0..0..0. .1..1..0..0..0. .0..0..0..0..0
..1..0..1..0..0. .1..0..1..0..1. .1..1..0..0..0. .0..1..0..0..0
		

Crossrefs

Cf. A296834.
Showing 1-6 of 6 results.