A296846 Solution of the complementary equation a(n) = a(n-1) + a(n-2) - b(n-2), where a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 5, 7, 10, 13, 17, 22, 30, 41, 59, 86, 130, 200, 312, 493, 785, 1257, 2019, 3252, 5246, 8472, 13691, 22135, 35797, 57901, 93666, 151534, 245166, 396665, 641795, 1038423, 1680180, 2718564, 4398704, 7117226, 11515887, 18633069, 30148911, 48781934, 78930798
Offset: 0
Examples
a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4 a(2) = a(0) + a(1) - b(0) = 7 Complement: (b(n)) = (1, 2, 4, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 23, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 5; b[0] = 1; b[1] = 2; b[2] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] - b[n - 2]; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296846 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments