cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296848 Decimal expansion of limiting power-ratio for A295953; see Comments.

This page as a plain text file.
%I A296848 #7 Feb 09 2018 21:50:50
%S A296848 7,1,9,6,6,0,1,3,6,5,3,8,3,9,1,2,4,1,2,3,9,2,7,5,8,1,7,9,2,5,3,4,9,7,
%T A296848 9,1,3,4,3,3,3,3,3,2,6,8,1,1,3,1,1,0,4,1,1,9,0,0,0,0,8,9,5,7,3,1,1,9,
%U A296848 7,7,7,1,1,8,2,7,6,4,6,5,9,8,7,7,7,7
%N A296848 Decimal expansion of limiting power-ratio for A295953; see Comments.
%C A296848 Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A295953, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.
%e A296848 limiting power-ratio = 7.090700687355142881167747526503371215921...
%t A296848 a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5;
%t A296848 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
%t A296848 j = 1; While[j < 13, k = a[j] - j - 1;
%t A296848 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
%t A296848 Table[a[n], {n, 0, k}]; (* A295953 *)
%t A296848 z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
%t A296848 StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
%t A296848 Take[RealDigits[Last[h], 10][[1]], 120]   (* A296848 *)
%Y A296848 Cf. A001622, A295953, A296284, A296483.
%K A296848 nonn,easy,cons
%O A296848 1,1
%A A296848 _Clark Kimberling_, Jan 06 2018