This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296857 #20 Dec 27 2017 01:43:54 %S A296857 1,2,7,16,23,126,53,512,2401,1150,97,9072,151,5194,27209,65536,227, %T A296857 388962,311,230000,133931,23474,419,2612736,279841,51038,40353607, %U A296857 2036048,541,12244050,661,33554432,571039,131206,1668811,252047376,827,224542,1447033 %N A296857 For any number n > 0, let f(n) be the function that associates k to the prime(k)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the arithmetic functions with nonnegative integer values and a finite number of nonzero values; let g be the inverse of f; a(n) = g(f(n) * f(n)) (where i * j denotes the Dirichlet convolution of i and j). %C A296857 This sequence is the main diagonal of A248601. %C A296857 See A248601 for additional comments. %C A296857 For any n > 0, gcd(2 * n, a(2 * n)) = 2 * n. %H A296857 Rémy Sigrist, <a href="/A296857/b296857.txt">Table of n, a(n) for n = 1..10000</a> %H A296857 Rémy Sigrist, <a href="/A296857/a296857.png">Colored logarithmic scatterplot of the first 50000 terms</a> (where the color is function of A001222(n)) %H A296857 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_convolution">Dirichlet convolution</a>. %F A296857 For any n > 0 and k >= 0: %F A296857 - a(n) = A248601(n, n), %F A296857 - A001221(a(n)) <= A001221(n)^2, %F A296857 - A001222(a(n)) = A001222(n)^2, %F A296857 - A055396(a(n)) = A055396(n)^2, %F A296857 - A061395(a(n)) = A061395(n)^2, %F A296857 - a(A000040(n)) = A011757(n), %F A296857 - a(A000040(n)^k) = A011757(n)^(k^2). %e A296857 For n = 12: %e A296857 - f(12) = (2, 1, 0, 0, ...), %e A296857 - f(12) * f(12) = (4, 4, 0, 1, 0, 0, ...), %e A296857 - a(12) = prime(1)^4 * prime(2)^4 * prime(4) = 2^4 * 3^4 * 7 = 9072. %o A296857 (PARI) a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod(i=1, #p, prod(j=1, #p, prime(p[i]*p[j])^(f[i,2]*f[j,2]))) %Y A296857 Cf. A000040, A001221, A001222, A055396, A061395, A248601. %K A296857 nonn %O A296857 1,2 %A A296857 _Rémy Sigrist_, Dec 21 2017