This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296858 #19 May 14 2021 02:46:39 %S A296858 1,2,3,4,6,7,8,9,10,12,14,15,16,17,19,20,24,25,26,28,30,31,32,33,35, %T A296858 37,38,39,40,41,42,48,49,51,52,56,57,58,60,62,63,64,65,67,69,70,71,75, %U A296858 76,78,79,80,81,83,84,96,97,99,101,102,103,104,105,106,112 %N A296858 Numbers whose base-2 digits have #(pits) = #(peaks); see Comments. %C A296858 A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296858-A296860 partition the natural numbers. See the guides at A296882 and A296712. %H A296858 Clark Kimberling, <a href="/A296858/b296858.txt">Table of n, a(n) for n = 1..10000</a> %e A296858 The base-2 digits of 112 are 1,1,1,0,0,0,0; here #(pits) = 0 and #(peaks) = 0, so that 112 is in the sequence. %t A296858 z = 200; b = 2; %t A296858 d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]]; %t A296858 Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296858 *) %t A296858 Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296859 *) %t A296858 Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296860 *) %o A296858 (Python) %o A296858 def cwo(subs, s): # count with overlaps allowed %o A296858 c = i = 0 %o A296858 while i != -1: %o A296858 i = s.find(subs, i) %o A296858 if i != -1: c += 1; i += 1 %o A296858 return c %o A296858 def ok(n): b = bin(n)[2:]; return cwo('101', b) == cwo('010', b) %o A296858 print(list(filter(ok, range(1, 113)))) # _Michael S. Branicky_, May 11 2021 %Y A296858 Cf. A296882, A296712, A296859, A296860. %K A296858 nonn,base,easy %O A296858 1,2 %A A296858 _Clark Kimberling_, Jan 08 2018