This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296859 #17 May 11 2021 08:44:59 %S A296859 5,11,13,21,22,23,27,29,43,44,45,46,47,53,54,55,59,61,77,85,86,87,88, %T A296859 89,90,91,92,93,94,95,107,108,109,110,111,117,118,119,123,125,141,155, %U A296859 157,171,172,173,174,175,176,177,179,180,181,182,183,184,185,186 %N A296859 Numbers whose base-2 digits have #(pits) > #(peaks); see Comments. %C A296859 A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296858-A296860 partition the natural numbers. See the guides at A296882 and A296712. %H A296859 Clark Kimberling, <a href="/A296859/b296859.txt">Table of n, a(n) for n = 1..10000</a> %e A296859 The base-2 digits of 186 are 1,0,1,1,1,0,1,0; here #(pits) = 2 and #(peaks) = 1, so 186 is in the sequence. %t A296859 z = 200; b = 2; %t A296859 d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]]; %t A296859 Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296858 *) %t A296859 Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296859 *) %t A296859 Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296860 *) %o A296859 (Python) %o A296859 def cwo(subs, s): # count with overlaps allowed %o A296859 c = i = 0 %o A296859 while i != -1: %o A296859 i = s.find(subs, i) %o A296859 if i != -1: c += 1; i += 1 %o A296859 return c %o A296859 def ok(n): b = bin(n)[2:]; return cwo('101', b) > cwo('010', b) %o A296859 print(list(filter(ok, range(1, 187)))) # _Michael S. Branicky_, May 11 2021 %Y A296859 Cf. A296882, A296712, A296858, A296860. %K A296859 nonn,base,easy %O A296859 1,1 %A A296859 _Clark Kimberling_, Jan 09 2018