This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296860 #11 May 11 2021 06:11:17 %S A296860 18,34,36,50,66,68,72,73,74,82,98,100,114,130,132,136,137,138,144,145, %T A296860 146,147,148,162,164,194,196,200,201,202,210,226,228,242,258,260,264, %U A296860 265,266,272,273,274,275,276,288,289,290,291,292,293,294,295,296,297 %N A296860 Numbers k whose base-2 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments. %C A296860 A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296858-A296860 partition the natural numbers. See the guides at A296882 and A296712. %H A296860 Clark Kimberling, <a href="/A296860/b296860.txt">Table of n, a(n) for n = 1..10000</a> %e A296860 The base-2 digits of 297 are 1, 0, 0, 1, 0, 1, 0, 0, 1; here #(pits) = 1 and #(peaks) = 2, so 297 is in the sequence. %t A296860 z = 200; b = 2; %t A296860 d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]]; %t A296860 Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296858 *) %t A296860 Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296859 *) %t A296860 Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296860 *) %o A296860 (Python) %o A296860 def cwo(subs, s): # count with overlaps allowed %o A296860 c = i = 0 %o A296860 while i != -1: %o A296860 i = s.find(subs, i) %o A296860 if i != -1: c += 1; i += 1 %o A296860 return c %o A296860 def ok(n): b = bin(n)[2:]; return cwo('101', b) < cwo('010', b) %o A296860 print(list(filter(ok, range(1, 298)))) # _Michael S. Branicky_, May 11 2021 %Y A296860 Cf. A296882, A296712, A296858, A296859. %K A296860 nonn,base,easy %O A296860 1,1 %A A296860 _Clark Kimberling_, Jan 09 2018