This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296882 #13 Jan 21 2023 20:28:25 %S A296882 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, %T A296882 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49, %U A296882 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67 %N A296882 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(pits) = #(peaks); see Comments. %C A296882 A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296882-A296883 partition the natural numbers. See the guides at A296712. We have a(n) = A000027(n) for n=1..100 but not n=101. %C A296882 . %C A296882 Guide to related sequences: %C A296882 Base #(pits) = #(peaks) #(pits) > #(peaks) #(pits) < #(peaks) %C A296882 2 A296858 A296859 A296860 %C A296882 3 A296861 A296862 A296863 %C A296882 4 A296864 A296865 A296866 %C A296882 5 A296867 A296868 A296869 %C A296882 6 A296870 A296871 A296872 %C A296882 7 A296873 A296874 A296875 %C A296882 8 A296876 A296877 A296878 %C A296882 9 A296879 A296880 A296881 %C A296882 10 A296882 A296883 A296884 %C A296882 11 A296885 A296886 A296887 %C A296882 12 A296888 A296889 A296890 %C A296882 13 A296891 A296892 A296893 %C A296882 14 A296894 A296895 A296896 %C A296882 15 A296897 A296898 A296899 %C A296882 16 A296900 A296901 A296902 %C A296882 20 A296903 A296904 A296905 %C A296882 60 A296906 A296907 A296908 %H A296882 Clark Kimberling, <a href="/A296882/b296882.txt">Table of n, a(n) for n = 1..10000</a> %e A296882 The base-10 digits of 1212 are 1,2,1,2; here #(pits) = 1 and #(peaks) = 1, so 1212 is in the sequence. %t A296882 z = 200; b = 10; %t A296882 d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]]; %t A296882 Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296882 *) %t A296882 Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296883 *) %t A296882 Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296884 *) %Y A296882 Cf. A296882, A296712, A296883, A296884. %K A296882 nonn,base,easy %O A296882 1,2 %A A296882 _Clark Kimberling_, Jan 10 2018 %E A296882 Overview table corrected by _Georg Fischer_, Aug 24 2021